
Software Modeling and Reuse:

the good, the bad, and the ugly

Jon Whittle

joint work with John Hutchinson, Mark Rouncefield

School of Computing & Communications

Lancaster University, UK

whittle@comp.lancs.ac.uk

2001 AD

I'm sorry, Dave. I'm afraid I can't do that.

model-driven architecture

aka.
model-driven development
model-driven engineering

model-based software development
model-based design
model-integrated computing
domain-specific modeling

productivity

maintainability

portability

interoperability

all is well with the world

except for…

those darned naysayers

2011 AD

who was right?

talk outline

• Project EAMDE

• Discoveries

– Modeling Practice

– Reuse/DSLs/Architecture

Project EAMDE

• Widely-distributed questionnaire on how MDD is

used

– 35 questions pertaining to MDD application

– 449 responses

• In-depth interviews with MDD practitioners

– 22 interviews; 17 different companies

– 150,000 words of transcribed data

– >360 years of cumulative experience

• On-site ethnographic studies (ongoing)

– 2 done (by Steinar Kristoffersen); more planned

What EAMDE is not

• an attempt to quantify the penetration of MDD in

industry

• a study on UML

– deliberately broad view of MD*

• an attempt to evangelise or promote MDD

– interested in failure as much as success

First discovery:

a lot of MDD success
is hidden

UML BPMN Vendor

DSL

In-house

DSL
SysML Matlab/

Simulink

Which modeling languages do you use?

(tick all that apply)

DSLs favored over general-

purpose modeling

• mostly, companies write their own code

generators for very specific tasks

– In contrast, companies often ditch commercial tools

because they cannot modify them the way they want

or because they “don’t do everything”

– Multiple references to the fact that off-the-shelf tools

could have killed an MDD effort

• Generation of whole systems is not widespread

Second discovery:

code generation is a red herring

Code generation

“I guess at the end of the day, this dream of code

generation from models doesn’t exist – I mean
everything ends up being done by hand because

either we don’t trust code generators or they just

don’t generate the code we need… it’s actually
impossible to get in non-functional requirements

into code generators – it’s too difficult”

Offsetting gains without

realising it

• “sometimes the code generated makes it

necessary to use a larger CPU which costs more
money than the efficient code of an experienced

programmer”

• 8x more expensive to certify generated code

Don’t obsess about productivity

• 65-100% code

generated

• Figures on

productivity gains
differ

– 20-800% gain

– 27% loss

Third discovery:

the real benefits of
MDD are holistic

So if not productivity, then what?

• The real benefits of MDD are quality,

architecture, reuse

• “whenever you name any single

advantage…you can always achieve the same
advantage with another approach…”

– “it tends to be that a model-driven approach is more

likely to have a well articulated design and
architecture”

Example

• An organisation finds itself developing lots of

little (modeling) languages over time:

– “we were generating 70% of the system off these little

XML languages… we would try to separate out the

pieces that were generateable and the pieces that

weren’t… it motivated us to have better separation of

concerns”

Fourth discovery:

MDD must enable new things, not just
speed up old things

Doing things faster and better

is not enough

• If the status quo works (or is perceived to

work), there will be insufficient buy-in to change

– MDD should be sold not based on how it can do

things (slightly) better, but in terms of how it can fix

things that are broken

– “software is no longer a bottleneck”

People

The Psychology of MDD

Architects love MDD

The code guru hates it

as does the hobbyist developer

It’s bad news for offshoring

Middle-managers
are usually the

bottleneck

The MDD guru is likely
to be a developer and

domain expert

Organisation

Current Business Practice
Doesn’t Support MDD

• “lead architects need to understand that just

because their models are simple, they weren’t
going to be put out of a job…”

• Developers are defined by their expertise for a
technology not a domain; so it is not in their

interests to innovate

Business Practice Doesn’t

Support MDD

MDD works best in companies
that are not in the

software business

• domain experts already model

– “they already have an established way to design in

Powerpoint”

– “I think they are more open than a company that has very
long years of experience in software development”

MDD Works Best in Non-

Software Companies

The Good, The Bad, and The Ugly

The Good

• mature domain

• non-software context
• ground-up effort
• real business driver

“we put it directly in the line of the

product”

“we are not allowed to fail”

“the benefit was not only because we

introduced model-driven design”

“we also started a re-use group”

“if you didn’t introduce model-driven

design, the reuse initiative would have
failed”

“at this moment, embedded software is

not bottleneck in any project”

“56% of all our code is from re-used

building blocks, but in the beginning it was
only 5 or 10%”

“normally, decisions are made as low in

the organisation as possible

The Good

• critical path

• non-software context
• real business driver
• MDD an enabler for reuse

The Bad -Ass

“the same electrical design in a full size

truck as in a Cadillac”

“somebody would be writing the spec”

“they were actually outsourcing”

“there was an order of magnitude

difference in terms of number of people
involved from generation to generation”

“you couldn’t find a computer scientist if

you went on a search party”

“vendors try to push out-of-the-box code

generation”

“very, very challenging to do… so we wrote

our own code generator”

“if we did modeling just for code generation”

“you’ll likely not get the right abstraction”

The Bad -Ass

• mature domain

• non-software context
• ground-up effort
• real business driver

The Ugly

“it was a totally new concept of switching system”

“he made this huge decision ”

“50 developers all using this CASE tool”

“if there is a problem, they just contact the

[CASE tool] engineers.. That was kind of
their strategy”

“and suddenly the tool doesn’t do something

expected”

“they try to contact the vendor but they don’t

really know what’s going on”

“they couldn’t optimize the generated code”

“so the way they had to do it was asking the

hardware guys to have more hard disc, more
memory, because of the tool”

“it was a nightmare to them to add all the

features”

The Ugly

• immature domain

• top-down effort
• no real business driver
• lack of control

http://www.comp.lancs.ac.uk/~eamde/

whittle@comp.lancs.ac.uk

Model-Driven

Development:
A Practical Guide

John Hutchinson

Jon Whittle

Mark Rouncefield

CRC Press

Thank you for listening

• “Model Driven Engineering Practices in

Industry,” 2011 International Conference on
Software Engineering (ICSE)

• “Empirical Assessment of MDE in Industry,”
2011 International Conference on Software

Engineering (ICSE)

